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Abstract

We consider the string under local periodic force. We derive
the quantum internal motion of this system.

1 Introduction

According to Nielsen and Olesen (1973) there is parallelism between
the Higgs model of broken gauge invariance and the Landau-Ginzburg
superconductivity theory on the one hand and the dual string model
being the Abrikosov flux lines in superconductors II. So, dual string is
mathematical realization of magnetic flux tube in equilibrium againts the
pressure of the surrounding charged superfluid. Only strings with no ends
were considered by them (Nambu, 1974). The internal quantum motion of
strings is not considered by the authors.

We consider here the string of the length l, the left and right ends of
which are fixed and the string is under local periodic force Aϱ sinωt. We
derive the quantum internal motion of this system using the so called the
oscillator quantization of the string.
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The non-relativistic quantization of the equation for the energy of a free
particle

p2

2m
= E (1)

consists in replacing classical quantities by operators. We get the non-
relativistic Schrödinger equation for a free particle. The operator replacings
are E → ih̄∂/∂t, p → −ih̄∇.

The Schrödinger equation suffers from not being relativistically covari-
ant, meaning it does not take into account Einstein’s special relativity.

It is natural to perform the special relativity generalization of the energy
relation describing the energy:

E =
√
p2c2 +m2c4. (2)

Then, just inserting the quantum mechanical operators for momentum
and energy yields the equation

ih̄
∂

∂t
=
√
(−ih̄∇)2c2 +m2c4. (3)

This, however, is a cumbersome expression to work with because the
differential operator cannot be evaluated while under the square root sign.

Klein and Gordon instead began with the square of the above identity,
i.e. E2 = p2c2 +m2c4, which, when quantized, gives

(
ih̄
∂

∂t

)2
= (−ih̄∇)2c2 +m2c4. (4)

So, we have seen that the quantization of classical mechanics is the
simple replacing classical quantities by operators. We use here the novel
quantization method where classical oscillators forming the classical sys-
tems are replaced simply by the quantum solution of quantum oscillators.
The natural step is to apply the method to motion of the classical string.

2 The classical derivation of the string motion

The differential equation of motion of string elements can be derived by the
following way (Tikhonov et al., 1977). We suppose that the force acting
on the element dx of the string is given by the law:

T (x, t) = ES

(
∂u

∂x

)
, (5)
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where E is the modulus of elasticity, S is the cross section of the string.
We easily derive that

T (x+ dx)− T (x) = ESuxxdx. (6)

The mass dm of the element dx is ϱESdx, where ϱ = const is the mass
density of the string matter and the dynamical equilibrium gives

ϱSdxutt = ESuxxdx. (7)

So, we get

1

a2
utt − uxx = 0; a =

(
E

ϱ

)1/2
. (8)

Now, let us consider the following problem of the mathematical physics.
The string is under the local periodic force F = ϱA sinωt at point 0 < c < l.
With regard to the fact that we consider the additional periodical force
F = ϱA sinωt at point 0 < c < l, we must reformulate the standard string
problem of mathemtical physics as it follows. The motion of the string is
u1 in the interval 0 < x < c and u2 in the interval c < x < l.

So, we solve the mathematical problem:

(u1)tt = a2(u1)xx; 0 < x < c (9a)

(u2)tt = a2(u2)xx; c < x < l (9b)

with the conditions

u1(x = 0) = 0; u2(x = l) = 0 (10a)

u1(x = c) = u2(x = c) (10b)

E(u1)x(x = c)− E(u2)x(x = c) = ϱA sinωt. (11)

We look for the solution in the form (Koshlyakov, et al., 1962)

u1(x, t) = C1 sin
ωx

a
sinωt (12a)

u2(x, t) = C2 sin
ω(l − x)

a
sinωt. (12b)
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For the determination of the arbitrary constants C1, C2 with regard to
the conditions (10a), (10b), (11), we get the solution of our problem in the
folowing form (Koshljakov, et al., 1962):

u1(x, t) =
A

aω

sin ω(l−c)
a

sin ωl
a

sin
ωx

a
sinωt; 0 < x < c (13a)

u2(x, t) =
A

aω

sin ωc
a

sin ωl
a

sin
ω(l − x)

a
sinωt; c < x < l. (13b)

So, we see that the string motion is a such that at every point X ∈ (0, l)
there is an oscillator with an amplitudes

A1 =
A

aω

sin ω(l−c)
a

sin ωl
a

sin
ωx

a
; 0 < x < c (14a)

A2 =
A

aω

sin ωc
a

sin ωl
a

sin
ω(l − x)

a
; c < x < l. (14b)

3 Quantization of the string motion by harmonic

oscillators

It is well known that harmonic oscillator equation

ẍ+ ω2x = 0; ω =
√
k/m (15a)

has the solution

x(t) = A cos(ωt+ φ). (15b)

In case of the quantum mechanical oscillator motion, the solution for
the stationary sates is (Grashin, 1974)

ψn = NnHn exp (−ξ2/2); ξ = x
√
mω/h̄, (16)

where Nn is the normalization constant

Nn =

(
mω

πh̄

)1/4√√√√ 1

2nn!
(17)

and Hn are the Hermite polynomials defined by the following relation

Hn = (−1)neξ
2 dn

dξn
exp (−ξ2/2). (18)
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So, the wave function of the one string oscillator of the string with the
periodic force at point c in the form:

ψi(x, t) =
A

aω

sin ω(l−c)
a

sin ωl
a

sin
ω(xi − x)

a
Nni

cosωl

c
Hni

; 0 < x < c (19a)

and

ψi(x, t) =
A

aω

sin ω(l−c)
a

sin ωl
a

sin
ω(l − xi + x)

a
Nni

cosωl

c
Hni

; c < x < l. (19b)

The total wave function of the string system of oscillators is then

Ψ1(x, t) = Π∞
i ψi(x, t) =

Π∞
i

A

aω

sin ω(l−c)
a

sin ωl
a

sin
ω(xi − x)

a
Nni

cosωl

c
Hni

; 0 < x < c (20a)

and

Ψ2(x, t) = Π∞
i ψi(x, t) =

Π∞
i

A

aω

sin ω(l−c)
a

sin ωl
a

sin
ω(l − xi + x)

a
Nni

cosωl

c
Hni

; c < x < l. (20b)

Or,

Ψ1(x, t) =
A

aω

sin ω(l−c)
a

sin ωl
a

(
mω

πh̄

)1/4

Π∞
i

√√√√ 1

2nini!

cosωl

c
(−1)nieξ

2 dni

dξni
exp (−ξ2/2); 0 < x < c (21a)

with

ξ = (xi − x)
√
mω/h̄. (21aξ)

and
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Ψ2(x, t) =
A

aω

sin ω(l−c)
a

sin ωl
a

(
mω

πh̄

)1/4

Π∞
i

√√√√ 1

2nini!

cosωl

c
(−1)nieξ

2 dni

dξni
exp (−ξ2/2); c < x < l. (21b)

with

ξ = (l − xi + x)
√
mω/h̄. (21bξ)

So, the quantization of string is possible only if we devide the string
into elementary discrete points supposing that in every point of string
X ∈ (0, l), there is a quantum oscillator with the stationary states
described by eq. (19). There is an analogue representation to eq. (21),
which was applied by Feynman for determination of the quantum theory
of the Mössbauer effect (Feynman, 1972).

4 Discussion

The starting point for string theory is the idea that the point-like particles
are modeled by one-dimensional objects called strings. Strings propagate
through space and interact with each other. In a given version of string
theory, there is only one kind of string, which may look like a small loop,
or, segment of ordinary string, and it can vibrate in different ways. On
distance scales larger than the string scale, a string will look just like an
ordinary particle, with its mass, charge, and other properties determined
by the vibrational state of the string. In this way, all of the different
elementary particles may be viewed as vibrating strings. In string theory,
one of the vibrational states of the string gives rise to the graviton, a
quantum mechanical particle that carries gravitational force. Thus string
theory is also theory of quantum gravity and replaces the quantum gravity
with the gravitons with spin 2.

The string theory can be extended to the quark-quark interaction by
the string potential, defined as the quark mass correction to the string
potential, which was performed by Lambiase and Nesterenko (1996). The
calculation of the interquark potential generated by a string with massive
ends was performed by Nesterenko and Pirozhenko (1997), and others. The
propagation of a pulse in the real strings and rods which can be applied to
the two-quark system as pion and so on, was calculated by author (Pardy,
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2005). So, it is not excluded that our oscillator quantization of the string
can be extended to generate the new way of the string theory of matter
and space-time.
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